Case Study

INCIDENCE OF COLIBACILLOSIS IN KINGFISHER BIRD

S. S. Naik*, S. Sathapathy1, R. Mahapatra2 and K.C. Dehury3

*Department of Veterinary Microbiology, 1Department of Anatomy and Histology, 2Department of Veterinary Pharmacology and Toxicology, 3Department of ARGO, C.V.Sc. & A.H., OUAT, Bhubaneswar – 751 003

Corresponding author email: drsangramsinghaik@gmail.com

ABSTRACT
A common Kingfisher bird (Alcedo atthis) was presented with clinical signs of respiratory distress, depression, weakness, yellowish diarrhoea, vent pasted with faeces and died suddenly. After death, the post-mortem findings lay the first foundation of E. coli infection which was later confirmed by bacteriological and biochemical tests. The antibiotic sensitivity test revealed results that were specific for the bird under study.

KEY WORDS: Incidence, Colibacillosis, Kingfisher bird.

INTRODUCTION
Escherichia coli is a rod-shaped, Gram-negative, facultative anaerobic bacterium that belongs to the Enterobacteriaceae family. E. coli typically colonizes the intestinal tract of humans (Drasar and Hill, 1974), mammals and birds (Sokja, 1965). E. coli strains are usually found confined to the intestinal lumen, however in inmunosuppressed hosts or when the gastrointestinal barriers are violated, these bacteria may cause infectious diseases (Nataro and Kaper, 1998). Besides that, there are E. coli strains originated from adapted pathogenic clones that cause diseases among healthy animals (Nataro and Kaper, 1998). Pathogenic E. coli are associated with intestinal (Nataro and Kaper 1998) and extraintestinal human infections, like cystitis and pyelonephritis (Pechere, 1985), septicemia (Orskov and Orskov, 1985) and meningitis in neonatal infants (Overall Jr, 1970). Among other animals, pathogenic E. coli strains are also able to cause extraintestinal infections such as urinary infection (Wooley and Blue, 1976, Peeters, 1994) and pyometra (Bjurstrom, 1993) in dogs, and respiratory diseases in birds (Kaper et al., 2004). Currently, E. coli is considered to be the most significant example of gram-negative bacterium related with diverse diseases because of the different pathogenicity mechanisms and diseases that it is able to cause. Avian pathogenic E. coli strains are known as APEC (Dho-Moulin and Fairbrother, 1999) and are associated with diverse diseases, mainly extraintestinal, being responsible for great losses in the avian industry (Gross, 1994). Colibacillosis was reported by many researchers in different countries(omer et al.,2008,Vandekrchoveet al.,2004; Yang et al.,2004,Saenz et al.,2003, White et al.,2000) . therefor the disease is considered one of the principal causes of mortality and morbidity in birds. Inflammation of the oviduct causes in decreased egg production and sporadic mortality in laying chickens and breeders, salpingitis that occurs when E. coli ascends the oviduct from the cloaca and extension into the body cavity through the compromised oviduct wall that leads to concurrent peritonitis (Barnes et al., 2003).

History and Clinical signs
A common Kingfisher was presented with clinical signs of respiratory distress, depression, weakness, yellowish diarrhoea, vent pasted with faeces and died suddenly.

Post-mortem findings
After death the post-mortem examination was conducted. Necropsy revealed characteristic lesions in the liver, intestine, and gall bladder. The liver was enlarged, pale, friable and necrotic (Fig. 1). The gall bladder was distended with bile and haemorrhages were seen in the intestine (Fig. 2) (Omer et al., 2010). Also pericarditis was recorded as one of the prominent lesions (Fig. 1).

Isolation and identification of bacteria
After conducting necropsy, a small part of affected intestine was processed for bacteriological examination. The collected sample was inoculated on Nutrient Broth and incubated at 37°C for 24 hours and then transferred on selective media (Mac Conkey agar and Eosin methylene blue agar). The colonies were examined with naked eye for their cultural characteristics, morphological properties and any changes in the media. Gram-stained slides were obtained which were examined microscopically. The intestinal culture yielded round colonies with typical metallic sheen in Eosin methylene blue (EMB) agar (Fig. 4) (Horvath and Ropp, 1974). The colonies on MacConkey lactos agar appeared small, round and pink coloured (Fig. 3) (March and Ratnam, 1986). Gram stained smear showed uniform gram negative bacilli.

Biochemical tests of the isolate
The isolate was identified by using standard biochemical test kit (KB001 TM HiIMVIC, India) (Fig. 5) including, indol, methyl red, vogen praokskauer, citrate utilisation and carbohydrate fermentation test (glucose, Adonitol, arabinose, lactose, sorbitol, manitol, Rhamnose and sucrose). The isolate was biochemically identified as...
Colibacillosis in Kingfisher bird

E. coli using standard biochemical test kit (Omer et al., 2010).

FIGURE 1: Figure showing lesions in a) liver and b) heart of a kingfisher bird affected with Colibacillosis

FIGURE 2: Figure showing hemorrhagic lesions (arrow) in the intestine of a kingfisher bird affected with Colibacillosis

FIGURE 3: Figure showing pink colonies of *E. coli* on Mac conkey lactose Agar

FIGURE 4: Figure showing metallic sheen appearance of *E. coli* colonies on Eosin Methylene Blue Agar

FIGURE 5: KB001 TM HiIMViC, India Biochemical test Kit

FIGURE 6 and 7: Zone of inhibition on Mueller Hilton Agar using Kirby Bauer disk diffusion method

Antimicrobial susceptibility test

According to the standard operational procedures, antimicrobial susceptibility tests were done against 14 antimicrobial drugs on Mueller-Hilton agar (Oxoid, Hampshire, England) using Kirby Bauer disk diffusion method (Fig. 6 and Fig. 7). The antimicrobial agents tested were: Tetracycline (30 g), Nitrofurantoin (300 g), Erythromycin (15 g), Chloramphenicol (30 g), Gentamicin (10 g), Co-Troxamazol (25 g), Ceftriaxone (30 g), Norfloxacin (10 g), Amoxicillin-Clavulanic acid (20/10 g), Nalidixic acid (30 g), Ampicillin-clcloxacilin (10 g), Cefuroxime (30 g), Ceftriaxone (30 g), Piperaciline-Tazobactam (100 g), Ampicilin (10μg). Resistance data were interpreted according to National Committee for Clinical laboratory Standards (NCCLS) (Table 1). The isolate was sensitive to Gentamicine, Norfloxacin, Nitrofurantoin, however it was intermediately sensitive to Chloramphenicol and Co-Troxamazole. It was completely resistant to Tetracycline, Erythromycin, Amoxicillin-Clavulanic acid, Nalidixic Acid, Ampicilin-Cloxacilin, Cefuroxime, Ceftriaxone, Piperacilin-Tazobactam and Ampicilin.
<table>
<thead>
<tr>
<th>Sl. No</th>
<th>Name of the antimicrobials</th>
<th>Zone of inhibition (mm)</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gentamicine</td>
<td>15</td>
<td>Sensitive</td>
</tr>
<tr>
<td>2</td>
<td>Norfloxacin</td>
<td>22</td>
<td>Sensitive</td>
</tr>
<tr>
<td>3</td>
<td>Nitrofurantoin</td>
<td>19</td>
<td>Sensitive</td>
</tr>
<tr>
<td>4</td>
<td>Cotrimoxazole</td>
<td>13</td>
<td>Moderately sensitive</td>
</tr>
<tr>
<td>5</td>
<td>Chloramphenicol</td>
<td>17</td>
<td>Moderately sensitive</td>
</tr>
<tr>
<td>6</td>
<td>Tetracycline</td>
<td>0</td>
<td>Resistant</td>
</tr>
<tr>
<td>7</td>
<td>Erythromycin</td>
<td>0</td>
<td>Resistant</td>
</tr>
<tr>
<td>8</td>
<td>Amoxyclav</td>
<td>0</td>
<td>Resistant</td>
</tr>
<tr>
<td>9</td>
<td>Nalidixic acid</td>
<td>0</td>
<td>Resistant</td>
</tr>
<tr>
<td>10</td>
<td>Ampicillin+cloxacitin</td>
<td>7</td>
<td>Resistant</td>
</tr>
<tr>
<td>11</td>
<td>Cefuroxime</td>
<td>0</td>
<td>Resistant</td>
</tr>
<tr>
<td>12</td>
<td>Ceftriazone</td>
<td>0</td>
<td>Resistant</td>
</tr>
<tr>
<td>13</td>
<td>Piperacillin+tazobactam</td>
<td>8</td>
<td>Resistant</td>
</tr>
<tr>
<td>14</td>
<td>Amoxicillin</td>
<td>0</td>
<td>Resistant</td>
</tr>
</tbody>
</table>

CONCLUSION
It is apparent that APEC causes multi-factorial diseases, which involves host-pathogens interactions. The results of this study show high rates of antimicrobial resistance to Tetracycline, Erythromycin, Amoxicillin-Clavulanicacid, Nalidixic Acid, Ampicillin- Cloxacitin, Cefuroxime, Ceftriazone, Piperacillin-Tazobactam and Ampicillin. Nitrofurantoin, Norfloxacin and Gentamicin are considered appropriate for empirical treatment of E. coli. Further, molecular and biological characterization linked to appropriated animal models is needed to better understand the APEC pathogenesis. The incidence of colibacillosis in common Kingfisher bird is successfully reported here.

REFERENCES

