ABSTRACT

Pome fruits are highly susceptible to postharvest decomposition by various fungi. The most common decays resulting in tremendous economic losses are caused by Penicillium expansum, Botrytis cinerea, Monilinia fructicola, Colletotrichum spp., Mucor piriformis and Rhizopus spp. In addition to vast economic losses due to fungal decomposition of these fruits, some decay-causing pathogens (i.e. P. expansum) produce toxic secondary metabolites which have adverse health effects on humans. Mainly, synthetic fungicides have been used to protect fruits from postharvest pathogens. In order to reduce the use of these chemicals and consequently, lessen their adverse effects on human health and the environment and to find ways to control pathogen strains that have acquired resistance to such fungicides, scientists have been in quest of alternative methods for controlling postharvest pathogens. Biocontrol agents (BCAs) are a promising alternative to chemical fungicides. Several bacteria, yeasts and moulds including members of the Bacillus, Pantoea, Pseudomonas, Candida, Cryptococcus, Filobasidium, Kloeckera, Metchnikowia, Pichia, Rhodotorula, Sporobolomyces, Aureobasidium and Trichoderma genera were proven to possess biocontrol activities against various postharvest pathogens. Combinations of BCAs as well as application of a BCA following another treatment produced increased protective effects against the pathogens. This review summarizes the specific activities of several BCAs and their advantages and shortcomings as means of controlling postharvest decays of pome fruits.

KEY WORDS: postharvest decays, pome fruits, biocontrol, bacteria, yeasts, moulds.

INTRODUCTION

Many fungal species attack and cause spoilage of pome fruits (apples, pears, quinces, etc.) in the field and after harvest in storage, during marketing and at the consumers’ hands (El-Ghaouth et al., 2004; Pierson et al., 1971). The main mode of controlling field and postharvest fruit diseases involves the utilization of synthetic chemical pesticides. In more recent years there is a trend to turn away from such synthetic substances due to their toxicity and negative effects on human health and the environment (Eckert et al., 1994); additionally, pathogens often acquire resistance to these chemicals and can no longer be controlled by the traditional fungicides (Holmes and Eckert, 1999; Spotts and Cervantes, 1986; Xiao and Campbell, 2007). An attractive alternative is the utilization of biological control. Biocontrol is the use of live organisms, which, when applied to the plants or plant crops simultaneously with the disease-causing organisms, suppress the growth of the pathogen and therefore, lessen the impact of the disease (Eilenberg, 2006). These protective organisms are collectively referred to as biological control agents (BCAs). In order for a BCA to be effective, it should possess certain attributes such as the ability to grow well in the same environment (ecological fitness) where the pathogen grows and causes the disease, it should have similar nutritional requirements as the pathogen and most importantly, the BCA should not inflict disease on the crop that it is supposed to protect. Additionally, the biocontrol agent and its metabolites should not be toxic or pathogenic to humans and animals. The use of live organisms to protect crops from pathogenic ones has been considered for over three decades. Many biocontrol agents have been studied, but a much lesser number of them have been used on a commercial scale in various parts of the world to control a number of plant pathogenic organisms in the field (Johnsson et al., 1998; Stockwell et al., 2010). BCAs have also been tried for the protection of various fruits against postharvest pathogens with varying degrees of success. Applications of Aureobasidium pullulans on strawberries before storage, for instance, resulted in 70% reduction of spoilage by Rhizopus, while application of an antibiotic-producing Pseudomonas corrugata on wounded peaches and nectarines was effective in controlling postharvest brown rot caused by Monilinia fructicola. Similar effects against brown rot were observed when Pseudomonas cepacia (Burkholderia cepacia) was used at a concentration of 10^5 cfu/wound (Lima et al., 1997; Smilanick et al., 1993).
Several microorganisms possessing biocontrol capabilities against pome fruit postharvest pathogens have also been studied over the last three decades. Most of the research involving BCAs has been focused on the suppression of spoilage of pome fruits by *Penicillium expansum*, *Botrytis cinerea*, and *Rhizopus* spp. Some examples of such research include the studies on *Cryptococcus laurentii*, *Candida oleophila* and *Pseudomonas syringae* (ESC-10) as antagonists against grey mould (*B. cinerea*) of apples, the research on the potential of yeasts belonging to *Cryptococcus*, *Debaryomyces*, *Filobasidium*, *Rhodospirillum*, *Rhodotorula*, *Sirobasidium*, *Sporidiobolus*, *Tremella*, *Trichosporon* and *Yarrowia* genera as BCAs for controlling postharvest spoilage of pome fruits by *B. cinerea*, and the studies on *C. laurentii*, *Metschnikowia pulcherrima*, *C. oleophila*, and *P. syringae* as means of controlling blue mould (*P. expansum*) decays in apples (Filonow et al., 1996; He et al., 2003; Janisiewicz and Marchi, 1992; Janisiewicz et al., 2001; Janisiewicz and Korsten, 2002; Mercier and Wilson 1994; Roberts 1990; Sugar and Spotts 1999; Zhang et al., 2006). This review summarizes the bio-protective capabilities of various bacterial and fungal BCAs studied and/or utilized for the control of fungi causing postharvest spoilage in pome fruits.

Microorganisms with biocontrol activities against postharvest pathogens of pome fruits

An excellent postharvest biocontrol agent must have several characteristics including inability to grow at 37°C and cause human or animal disease, stability, high efficacy at low concentrations, feasibility to be produced easily and inexpensively, adaptability to a formulation with good shelf life, ease of dispersion, possessing modes of biocontrol other than production of antibiotics, ability to survive at low temperatures and controlled atmospheres, exerting efficacious control against the target postharvest pathogen(s) (preferably having inhibitory activity against a wide spectrum of pathogens), inability to cause disease on the treated commodity and resistance to chemical pesticides. Although it is difficult to find an ideal biocontrol agent with all these characteristics, several bacterial and fungal strains have exhibited good antagonistic properties against various postharvest fruit pathogens. Among the most extensively-studied BCAs are *Pseudomonas* spp., *Aureobasidium pullulans*, *Trichoderma* spp. and certain members of the yeast genera *Cryptococcus*, *Candida*, *Metschnikowia*, *Pichia*, *Rhodotorula* and *Sporobolomyces* (Table 1). A description of the efficiencies of these organisms is presented in the following pages.

Bacteria

1. **Bacillus species**

Several *Bacillus* strains showed potential as BCAs for the protection of pome fruits against postharvest spoilage. *Bacillus* sp. T03-c from preserved bean curd (Furu) and *Bacillus* sp. C06 (B. amyloliquefaciens) from cheese starter were antagonistic to *M. fructicola* and reduced brown rot decays of artificially-infected apple fruits by more than 50% as compared to the pathogen-only-inoculated control fruits (Zhou et al., 2008). Various strains of *Bacillus megaterium* were also found to possess biocontrol properties against pre- and postharvest pathogens. Abanda-Nkwatt et al. (2006) reported that a *B. megaterium* isolate from strawberry leaves exhibited good biocontrol against *B. cinerea in vitro*. Poleatwich (2010) studied the biocontrol potential of *B. megaterium*, strains A3-6 and Ae-1 on Golden Delicious and Rome Beauty apples pre- and postharvest. Pre-harvest application of the bacteria reduced leaf and fruit scab (caused by *Venturia inaequalis*). The biocontrol effects continued after harvest and suppressed bitter rot (*Colletotrichum acutatum*) development in apples during storage. The biocontrol activity was improved when these BCAs were re-applied to the fruits after harvest. Postharvest application of strain A3-6 or Ae-1 in combination with chitosan caused a significant reduction in blue mould rot and improved the control of bitter rot in Golden Delicious and Rome Beauty apples. Scanning electron microscopy studies showed that *B. megaterium* A3-6 cells were attached to *C. acutatum* hyphae and that the hyphae were damaged at the points of attachment. Another *Bacillus*, *B. mycoides* strain A1-1, as well as *Brevibacillus laterosporus* isolate FLS-1 also induced significant reduction of bitter rot and blue mould lesion size on Golden Delicious and Rome Beauty apples (Poleatwich, 2010).

2. **Burkholderia species**

Burkholderia cepacia (*P. cepacia*) was studied and found to have inhibitory activity against some plant and postharvest pathogens such as *B. cinerea* and *P. expansum* on apples and pears (Janisiewicz et al., 1991; Parke, 2005). *B. cepacia* products, Blue Circle and Deny, were developed and registered with the United States Environmental Protection Agency (USEPA) as biocontrol agents. Due to the fact that some *B. cepacia* strains are human pathogens, however, in 2004 EPA issued a new rule revoking all *B. cepacia* strains as BCAs (USEPA, 2004). *Burkholderia gladioli* was evaluated by Scuderi et al. (2009). In this study, cell suspensions and cell-free culture filtrates of three *B. gladioli* strains were tested in *vitro*. Both, cells and cell-free filtrates, showed varying degrees of inhibition against *P. expansum*, *B. cinerea* and *Aspergillus flavus* among other postharvest pathogens. Application of cell suspension had greater inhibitory effect on pathogens than cell-free culture filtrates. Complete inhibition of *P. expansum* inoculated on apple wounds and incubated for 9 days at 20°C was achieved by one of the strains (DISTEF-G).

3. **Lactic acid bacteria (LAB)**

Lactic acid bacteria recovered from fresh fruits and vegetables were tested for antagonistic activities against *P. expansum* and *B. cinerea* by Trias et al. (2008). This study revealed that some LAB isolates possessed moderate biocontrol activity against the pathogens. A *Weissella cibaria* (strain TM128) reduced infection levels in artificially-wounded and inoculated Golden Delicious apples by 50%. Antimicrobial compounds found in cell-free supernatants of some bacterial cultures were mainly organic acids, while some bacteria also facilitated the formation of hydrogen peroxide. Zhou et al. (2008) tested several bacterial strains including *Lactobacillus* strains P02 (recovered from Kimchi-cabbage) and C03-b (from Ricotta cheese) for antagonistic activity against *M. fructicola*. These investigators surface
sterilized and artificially wounded Jonagold and Golden Delicious apples and subsequently, inoculated the wounded fruits with 20 µl/wound of a suspension containing a potential biocontrol agent and the pathogen (1.0 x 10^7 cfu/ml biocontrol agent and 1.0 x 10^4 M. fruticola conidia/ml). The treated apples were incubated at 22-24°C under 85% relative humidity (RH). The incidence and severity of the disease was observed after 5 days of incubation. Both strains showed antagonism against the pathogen. Lactobacillus strain (P02) reduced the incidence of brown rot of apple fruit by more than 80% and the lesion size by over 90%, while Lactobacillus sp. C03-b reduced incidence of decays by 53% and lesion size by about 47%.

4. Pantoea agglomerans

Various past studies have shown that effective control of postharvest apple and pear diseases could be achieved by application of Pantoea agglomerans. Francés et al. (2006) studied the effect of P. agglomerans EPS125 on various postharvest pome fruit fungal pathogens. These investigators used Golden Delicious apples and Blanquilla pears in their experiments and found that P. agglomerans was efficient in controlling blue mould and R. stolonifer on apples and pears, and B. cinerea on apples. The degree of biocontrol depended on the pathogen aggressiveness and the concentration of the BCA. Nunes et al. (2002a) studied the effects of P. agglomerans (strain CPA-2) on the growth of the above pathogens on Golden Delicious apples. These investigators inoculated various concentrations of P. agglomerans along with the pathogens, P. expansum or B. cinerea, onto the wounds of artificially-damaged apples and incubated the treated fruits at 20°C and ~85% RH for 1 week. The conclusion of this study was that P. agglomerans was a potent antagonist of the pathogens examined. The highest control of P. expansum and B. cinerea was achieved when P. agglomerans was used at a concentration of 8.0 x 10^7 cfu/ml. The antagonistic effect was further enhanced when P. agglomerans (8.0 x 10^7 cfu/ml) was applied in combination with C. sake (2.0 x 10^7 cfu/ml) at a 50:50 proportion. The efficacy of P. agglomerans against P. expansum and B. cinerea was also studied on apples stored at 1°C and ~90% RH for 120 days in air or 140 days under reduced oxygen. P. expansum decays of fruits in cold storage (1°C) in air and under low oxygen (1% O2-2% CO2) were reduced by 81 and 100%, respectively. Under these conditions, control of B. cinerea by P. agglomerans was similar to that of 0.5% of the fungicide, imazalil (Nunes et al., 2001).

Nunes et al. (2001) also studied the efficacy of P. agglomerans (CPA-2) for controlling postharvest diseases of pears and reported that this organism was very effective against B. cinerea, P. expansum and R. stolonifer grown on pears. These investigators inoculated wounded Blanquilla pears with 2.0 x 10^6, 8.0 x 10^6 or 1.0 x 10^6 cfu/ml of P. agglomerans along with a pathogen mould (B. cinerea, P. expansum or R. stolonifer) at concentrations of 1.0 x 10^8, 1.0 x 10^9 or 1.0 x 10^8 spores/ml and stored the treated fruits at 20°C for 7 days or at 1°C for 60 days. P. agglomerans grew well on the fruit wounds at room temperature and cold storage but did not flourish on the surface of intact fruits perhaps due to inability to derive enough nutrition from the intact skin of the fruit. At 20°C, the antagonist completely inhibited P. expansum and R. stolonifer and significantly reduced B. cinerea lesion size. Pantoea was also very effective against B. cinerea and P. expansum in cold storage. Its inhibitory effect was comparable to that of commercial doses of imazalil.

5. Pseudomonas species

Several pseudomonads have been assessed and found to possess biocontrol properties against various plant and postharvest pathogens. They are suitable as BCAs because they can utilize many compounds present in plant exudates as sources of nutrition, they can survive in the environment under relatively harsh conditions and they grow exponentially in pome fruit wounds protecting the fruit from fungal pathogen infections and decay (Lungtenberg et al., 1999; Janisiewicz, 2012). The ability and degree of biocontrol is species- and strain-dependent. Experiments by Etebarian et al. (2005) showed that Pseudomonas fluorescens (strain 1100-6) significantly suppressed the incidence and size of rots caused by P. expansum on apples after 11 days of incubation at 20°C and 25 days at 5°C when it was inoculated onto apple wounds 24-48 h before the pathogen. The levels of P. fluorescens were increased during the incubation period from 6.95 at inoculation time to 9.12 log 10 cfu/wound after 25 days at 5°C. Cell-free supernatants of P. fluorescens cultures also reduced colony size of P. expansum, indicating that the organism perhaps excretes antifungal compound(s).

Certain Pseudomonas syringae strains such as ESC-10 (from apple fruit) and ESC-11 (from apple leaf) have been extensively studied and commercialized as biocontrol agents. ESC-10 is sold under the commercial names BioSave 10 LP, BioSave 100 and BioSave 1000, while ESC-11 (formerly called P. syringae strain L-59-66) is marketed as BioSave 110 and BioSave 11 LP (Stockwell and Stack, 2007). Comparisons of BioSave formulations to chemical fungicides and alternative decay control treatments have shown that these formulations are highly efficient in limiting postharvest fruit spoilage. Sugar and Basile (2007) examined various non-fungicide treatments for the inhibition of postharvest decay in winter pears including BioSave 110, chitosan, sodium bicarbonate and peroxyacetic acid (StorOx), and thiabendazole (TBZ) (Mertect 340F) as chemical fungicide control. Postharvest treatments were applied to wounds of Bosc pears and the treated fruits were stored at 0°C for 4 months. Although all treatments exerted significant control of pear decay, the lowest decay was observed in fruits treated with sodium bicarbonate and BioSave 110. Decay control by these methods was comparable to that facilitated by TBZ. Sodium bicarbonate and chitosan, however, caused fruit injuries and could not be recommended for decay control in pears. BioSave 10 LP and BioSave 11 LP were also applied to pome fruits after harvest to control storage pathogens (Stockwell and Stack, 2007). Use of BioSave 10 LP reduced growth of blue and grey mould decays in Golden Delicious apples by over 60% while BioSave 11 LP effected 67-97% control of these diseases (Janisiewicz and Korsten, 2002). BioSave 11 LP exerted 100% biocontrol of blue mould on Ace Spur Delicious and Pink Lady apples in cold storage (Janisiewicz et al., 1992). The
latter strain was also very effective against gray mould rot in Anjou, Bosc and Bartlett pears bringing about 100, 78 and 100% decay control, respectively when the treated fruits were stored at ambient temperature. The control of blue mould on the same pear varieties by BioSave 11 LP was 93, 69 and 41% in cold storage and 84, 46 and 40% at ambient storage for Anjou, Bartlett and Bosc pears, respectively (Janisiewicz and Peterson, 2004). In another study, Errampalli and Brubacher (2006) tested BioSave 10 LP and cyprodinil (a reduced risk fungicide) for their efficacies in controlling blue mould in Empire and McIntosh apples in cold storage (−2°C) or at 20°C. These investigators used a bacterial concentration of 1.4 x 10⁵ cfu/ml or 20 μg/ml cyprodinil. These concentrations were proven effective against TBZ-sensitive and TBZ-resistant
P. expansum strains when the inoculated fruits were kept in cold storage for 30 days and subsequently at 20°C for 6 days. Cyprodinil was effective when it was applied at the same time or after pathogen inoculation, while P. syringae was more effective when it was co-inoculated with the pathogen.

Yeast

Several members of the Candida, Cryptococcus, Filobasidium, Kloekera, Metchnikowia, Pichia, Rhodosporidium, Rhodotorula, Sporobolomyces, and Saccharomyces genera were assessed and proven to possess biocontrol activity against various pome fruit postharvest pathogens. A description of the biocontrol capabilities of several such yeast species is given in the following pages.

1. **Candida species**

Candida oleophila has been extensively studied as BCA for postharvest control of fungal pathogens to reduce fruit losses in storage. The antagonistic activity of *C. oleophila* against the gray mould causative agent, *B. cinerea*, was investigated by Mercier and Wilson (1994). These researchers applied 20 μl of a *C. oleophila* (strain 182) cell suspension (~1.0 x 10⁶ cells/ml) to freshly-inflicted wounds of Red Delicious apples and 2 h later infected the wounds with 20 μl of a *B. cinerea* conidial suspension (1.0 x 10⁵ cfu/ml); subsequently, they stored the treated fruits at 4 and 18°C for 20 and 10 days, respectively. Observations made after the incubation periods revealed that *C. oleophila* successfully colonized the wounds of the fruit and exercised significant gray mould control. Co-inoculation of *C. oleophila* with some natural fungal flora of apples (e.g. Aureobasidium pullulans or Sporobolomyces roseus) did not affect its colonization ability and in some cases improved the antagonist effect against the pathogen. Mercier and Wilson (1995) investigated the biocontrol activity of *C. oleophila* (isolate 182) on wounded apples with various levels of moisture in the wound area and reported that this antagonist exercised efficient control of gray mould decay on wounded apples stored at 18°C. Moisture level in the wound area affected yeast proliferation. Application of the yeast to fresh wounds (high moisture) resulted in a 32-fold increase of yeast population in the first 24 h and increased the degree of biocontrol of the pathogen (*B. cinerea*), while air-drying the wounded apples for 24 h (prior to the BCA application) resulted in significantly lower yeast growth and lower degree of *B. cinerea* inhibition. Wisniewski et al. (1995) studied the effects of Ca²⁺ and Mg²⁺ on the biocontrol activity of *C. oleophila* (strain 182) against *B. cinerea* and *P. expansum*. These investigators found that the biocontrol activity of the yeast was increased when 90 or 180 mM of CaCl₂ was added and that Ca²⁺ ions were inhibitory to mould sporation. When the CaCl₂ concentration increased from 25-175 mM, the spor germination and germ tube growth was decreased in both moulds tested. The pectinolytic activity of *B. cinerea* and *P. expansum* were also inhibited by CaCl₂ with a greater effect on *P. expansum*. *C. oleophila* was commercially utilized under the name ‘Aspire’ in the U.S. for postharvest biocontrol of fungal pathogens to reduce fruit losses in storage. This product however, is no longer available (Droby et al., 2009). Another *C. oleophila*-based product under the name ‘Nexy’ was later developed in Belgium for use as a postharvest biocontrol agent against *P. expansum* and *B. cinerea* on apples and pears (Janisiewicz, 2010; Kegley et al., 2010).

Candida ciferrii strain 283 was assessed as an antagonist of *P. expansum* on harvested Red Delicious apples and was found to reduce blue mould decays by 80% when the inoculated fruits were stored at 25°C for 7 days or at 5°C for 28 days. The severity of mould decay was also significantly reduced by the application of this yeast (Vero et al., 2002). Scherm et al. (2003) studied the effects of two *Candida guilliermondii* strains (3-C-1b and F1) on the *P. expansum* inoculated on apples. During this study, Golden Delicious and Fuji apples were surface-disinfected, wounded and inoculated with *C. guilliermondii* (1.0 x 10⁶ cells/wound); two hours after the yeast application, the fruits were artificially-infected with *P. expansum* (1.0 x 10⁶ conidia/wound) and stored at 25°C under ~85% RH for 1 week. Both strains had significant antagonistic capabilities against *P. expansum* reducing lesion diameter on Golden Delicious apples by 27.5%. Combination of *C. guilliermondii* with CaCl₂ increased pathogen inhibition sometimes up to 100%.

Candida membranaefaciens was tested by Gholamnejad and Etebarian (2009) in *vitro* and *in vivo* (on apples) for antagonism against *P. expansum*. These investigators used yeast cell suspensions, cell-free culture filtrates and volatile culture metabolites in their experiments and found that the highest inhibition was facilitated by the volatile metabolite fraction followed by cell-free filtrates. Yeast cell suspensions were also inhibitory to spor germination and germ tube growth. The degree of inhibition depended on the yeast cell concentration; at a concentration of 1.0 x 10⁸ cfu/ml, *P. expansum* was completely inhibited in *vitro* and on apples. The antagonistic activity of the yeast was enhanced by the addition of 2% CaCl₂ to the suspension. The potential of *Candida sake* as a biocontrol agent against *P. expansum* was investigated by Usall et al. (2000). These investigators artificially inoculated harvested Golden Delicious apples with *C. sake* (strain CPA-1) and the pathogen before cold storage. This treatment caused over 80% reduction in lesion diameter and 50% reduction in the incidence of decays. Higher biocontrol was achieved when the inoculated fruits were stored under controlled atmospheres (Teixido et al., 1999). *C. sake* has been utilized in the formulation of ‘Candifruit’, a biocontrol product developed in Spain and used for controlling...

2. Cryptococcus species

Past studies showed that some cryptococci possessed substantial antagonistic activities against various postharvest pathogens. Several Cryptococcus strains (Cryptococcus albidus strain HRB2, Cryptococcus infirmo-miniatius strain YY6, Cryptococcus laurentii strain HRA5, etc.) were studied by Chand-Goyal and Spotts (1996) for antagonism against moulds causing pear diseases. *Cr. albidus* strain HRB2, *Cr. infirmo-miniatius* strain YY6 and *Cr. laurentii* strain HRA5 were effective against blue mould; *Cr. laurentii* HRA5 and *Cr. infirmo-miniatius* YY6 were also inhibitory to gray mould, while *Cr. infirmo-miniatius* strain YY6 was the most efficient in controlling *Mucor* rot. This strain, when inoculated onto wounded Bosc pears (about 5.0×10^6 cfu/wound), was also effective in reducing blue mould rot for 60 days at 0°C. The incidence of infection was reduced by more than 70% and the lesion size decreased from about 21 mm to less than 4 mm (Sugar and Spotts, 1999). Another *Cr. albidus* strain (CBS No. 604.94) was highly effective against *Botrytis cinerea* and *P. expansum* in apples and pears; this BCA was commercialized and registered in South Africa under the brand name YieldPlus (Anchor Yeast, South Africa) (Haissam, 2011). Filonow et al. (1996) tested *Cryptococcus humicolosa* NRRL Y1266 in vivo. According to these investigators, *Cr. humicolosa* applied to wounds of Golden Delicious apples, which were subsequently inoculated with *B. cinerea* spores and incubated at 22-24°C for 7 days, reduced the incidence of mould growth by 89% and the lesion diameter from over 27 mm to 1.1 mm as compared with the control apples. The severity and incidence of gray mould on apples treated with *Cr. humicolosa* was substantially lower than on apples treated with the pesticide benomyl. Research on *Cr. laurentii* showed that several strains of this species were efficient antagonists of postharvest pathogens. He et al. (2003) tested a *Cr. laurentii* strain (isolated from soil collected from a pear orchard) for its antagonistic activity against *P. expansum*. These researchers inoculated the test yeast and the pathogen on wounds of Red Fuji apples, incubated the treated fruits under various conditions and determined that *Cr. laurentii* possessed biocontrol activity and that certain factors such as Fe^{2+} concentration in the yeast growth medium, inoculation timing and incubation temperature affected the degree of biocontrol. The highest pathogen inhibition was observed when the yeast was growing in a medium containing $2.5 \mu M/Fe^{2+}$ and it was suggested that perhaps there was some competition for iron that facilitated inhibition of *P. expansum* spore germination. The size of the mould decay was positively-correlated with the incubation temperature and inversely-correlated to yeast concentration inoculated onto the fruit wounds. A concentration of 3.5×10^7 *Cr. Laurentii* cells/ml was sufficient to inhibit the growth of *P. expansum* (1.0×10^4 spores/ml) for over 2 weeks when incubated at 15°C. The timing of the antagonist inoculation also played a pivotal role in the degree of biocontrol exhibited by this yeast. Application of the antagonist 12 h or longer prior to inoculation of the pathogen resulted in complete protection of the apples against the pathogen (He et al., 2003). *Cr. laurentii* BSR-Y22 (from soil) reduced gray mould spoilage substantially in artificially-infected Golden Delicious apples. The apples were co-inoculated with *B. cinerea* and its antagonist yeast and incubated for 1 week at 22-24°C. The incidence of *Botrytis* growth after the incubation period was reduced by 74.4% and the diameters of the lesions were about 1.5 mm while respective lesions on pathogen-only-inoculated apples were larger than 27 mm (Filonow et al., 1996). In a study by Roberts (1990), *Cr. laurentii* RR87-108 ($1.0 \times 10^4 - 1.0 \times 10^5$ cells/wound) was inoculated onto punctured wounds of Golden Delicious apples along with *B. cinerea* conidia ($10 \mu l$ of a suspension containing 2.0×10^4 spores/ml) and the fruits were incubated at various temperatures (5, 10, 15, or 20°C) for 3 days. The results of this study showed that this strain was a strong antagonist of *B. cinerea* at all temperatures tested and its effect was similar to that of the fungicide benomyl. A *Cr. laurentii* strain isolated from the surface of pear from an unsprayed orchard was studied by Zhang et al. (2006). These investigators tested the organism for its ability to control the growth of *P. expansum* on artificially-wounded pears. The fruit wounds were inoculated with 20 µl of a *P. expansum* conidial suspension (1.0×10^5 spores/ml), air-dried for 2 h and subsequently, inoculated with 30 µl of a *Cr. laurentii* suspension (1.0×10^8 cells/ml). Then the fruits were stored at 25°C for 6 days. This experiment showed that the antagonist yeast effected a significant reduction of both, percentage of decayed fruits and size of lesions. Biocontrol was enhanced when the antagonist was combined with microwave treatment ($2450 \text{ MHz for 2-3 min}$). Sugar and Spotts (1999) tested two *Cr. laurentii* strains (HRA5 and 87-108) among other yeast species for their effects on the growth of TBZ-sensitive and TBZ-resistant *P. expansum* on Bosc pears. Both strains exhibited strong biocontrol traits against the mould pathogen reducing its occurrence on the artificially-inflicted pear wounds by 94-96% and the size of the lesions from about 22 mm to less than 1 mm. These strains had significantly higher antagonistic activities than those of the commercial biofungicides, Aspire and BioSave 11. Other *Cr. laurentii* strains (e.g. *Cr. laurentii* BSR-Y7 and *Cr. laurentii* EB-4D-Y4) were antagonistic to *B. cinerea* grown on Golden Delicious apples to much lesser degrees (Filonow et al., 1996).

3. Filobasidium floriforme

Filobasidium floriforme NRRL Y7454 was found to substantially reduce the incidence of spoilage in Golden Delicious apples by gray mould. Decay incidence was reduced by 75.6% and the lesion size was about 1/9 that on the untreated control apples after 1 week of incubation at 22-24°C. The pathogen suppression achieved by this strain was comparable to that of the chemical fungicide, chlorothalonil and the well accepted biocontrol agent, *Sporobolomyces roseus* FS-43-238 (Filonow et al., 1996).

4. Kloeckera species

Some *Kloeckera* strains have also been tested in the past for biocontrol activity and a few were found to be antagonistic to postharvest pathogens of apples. Four strains of *Kloeckera apiculata* (including strain 138, isolated from the surface of grapes) were evaluated for biocontrol activity against *B. cinerea* and *P. expansum* by...
McLaughlin et al. (1992). These investigators inoculated artificially-wounded apples with a suspension containing 1.0 x 10^6 cells/ml of K. apiculata (50 µl/wound) and, after 2 h at 24-26°C, they infected the fruit wounds with P. expansum (20 µl/wound of a 1.0 x 10^7 spores/ml suspension) or B. cinerea (20 µl/wound of a 1.0 x 10^7 spores/ml suspension) and stored the treated fruits at 24°C for 1 week. The tested yeast strains were effective in reducing decays caused by both, B. cinerea and P. expansum. Their biocontrol efficacies increased when the yeast cell suspensions were made in 2% CaCl_2. Spadaro et al. (2008) tested Hanseniaspora uvarum (K. apiculata asexual stage) for biocontrol activity against P. expansum artificially-inoculated on four apple cultivars (Golden Delicious, Stark Delicious, Granny Smith and Royal Gala) after harvest. The infected apples were stored at room temperature and in cold storage. The results of this study suggested that H. uvarum exerted significant biocontrol of P. expansum on Golden Delicious apples.

5. Metschnikowia species
Certain Metschnikowia strains have exhibited biocontrol activity against postharvest pathogens of pome fruits. In general, the most effectual BCAs were strains residing in orchards and on fruit surfaces. Metschnikowia andaensis PBC-2 (isolated from apple fruit) was studied by Manso and Nunes (2011) for its ability to inhibit P. expansum on various apple cultivars and Roche pears. This organism (at concentration of 1.0 x 10^7 cells/ml) was able to reduce blue mould decays on both apples and pears. M. andaensis was also very effective against R. stolonifer and B. cinerea artificially-inoculated on Golden Delicious apples and exercised excellent control of P. expansum in semi-commercial trials under cold storage. The mechanism of biocontrol action of this organism is not known. Metschnikowia fructicola was also found to possess significant biocontrol activity. This organism is registered in Israel under the name ‘Shemer’ and has been used for the control of postharvest diseases of various fruits and vegetables (Droby, 2006; Blachinsky et al., 2007; Kurtzman and Droby, 2001).

Metschnikowia pulcherrima has been frequently isolated from orchards and various aerial parts of apple trees (leaves, growing apples, apple buds and floral parts) and is one of the most frequently isolated organisms from wounded apples and mature grapes (Davenport, 1976; Chamberlain et al., 1997). Therefore, its potential as a biocontrol agent has been explored in the past couple of decades. Janisiewicz et al. (2001) tested eight M. pulcherrima strains originating from an unmanaged orchard for their antagonistic activities against P. expansum on artificially-wounded Golden Delicious apples. These investigators reported that all tested strains grew similarly well on laboratory media at 1°C, but had differing growth rates at 0°C and different degrees of resistance to diphenylamine (DPA), an antioxidant used to control scaling of apples in storage. All strains exhibited a high biocontrol potential against P. expansum and significantly reduced decays on Golden Delicious apples stored for 1 month at 1°C followed by 1 week at room temperature. Furthermore, these researchers reported that the strains under study did not produce killer toxins that would be active against Saccharomyces cerevisiae NCYC 1006 (a strain sensitive to these toxins) (Farris et al., 1991). Saravanakumar et al. (2008) studied M. pulcherrima strain MACH1 for its ability to inhibit the growth of B. cinerea, Alternaria alternata and P. expansum on apples stored at 1°C for 8 months. In vitro and in vivo tests showed that this yeast under low iron concentrations retarded the growth of the mould pathogens through iron depletion. In another study by Conway et al. (2004), two strains of M. pulcherrima (SD1-D9 and FMB-24H-2) were tested for their capabilities to control P. expansum and C. acutatum on Golden Delicious apples. The fruits were artificially wounded and inoculated with both mould pathogen and one of the M. pulcherrima strains and subsequently, one lot was refrigerated at 0°C while another was heated at 38°C for 4 days. After the heat treatment, all apples were stored at 0°C for 4 months followed by 2 weeks at 20°C. Both yeast strains had a strong inhibitory effect on C. acutatum during the 4-month storage at 0°C, but they were not effective during storage at 20°C; the biocontrol activities of these yeast strains were weaker against blue mould during cold storage than on C. acutatum. Janisiewicz et al. (2003) had also investigated the effects of M. pulcherrima (T5-A2) and heat treatment (38°C for 4 days) against C. acutatum and P. expansum inoculated on artificially-wounded Golden Delicious apples and found that this yeast was more efficient in controlling C. acutatum, while heat was more effective against P. expansum. Additionally, M. pulcherrima was very efficient in inhibiting P. expansum growth on Stark Delicious, Granny Smith and Royal Gala apples (Spadaro et al., 2008).

6. Pichia species
Pichia angusta (formerly Hansenula polymorpha), Pichia guilliermondii, Pichia anomala, and Pichia fermentans have shown biocontrol activities against various plant pathogenic fungi. P. angusta was studied by Fiori et al. (2008) for its ability to control B. cinerea, P. expansum and M. fructicola in stored apples. These investigators used seven strains of the yeast from the Ancona Yeast Collection (ANY-32, ANY-34, ANY-38, ANY-39, ANY-41, ANY-43, and ANY-67). Yeast suspensions (1.0 x 10^8 cells/ml) were inoculated onto artificially-infected wounds (10 µl/wound) of otherwise sound Golden Delicious apples. The postharvest pathogens, P. expansum, B. cinerea and M. fructicola, were inoculated onto the wounds of the apples (~1.0 x 10^7 spores/wound) 2 h after yeast application and the fruits were incubated at 25°C for 8 days as described by Giobbe et al. (2007). Subsequently, the lesion diameters were measured and compared to lesion size of the control, which was inoculated with the pathogen but not with the yeast antagonist. Significant reduction of lesion size facilitated by P. angusta was observed in all apples inoculated with B. cinerea or M. fructicola, but the yeast was not very effective against P. expansum. Apples inoculated with the latter pathogen had smaller decays than respective controls, but the differences were not significant (Fiori et al., 2008). McLaughlin et al. (1992) reported that P. guilliermondii was effective against B. cinerea inoculated onto wounds of Golden Delicious apples and an enhancement of the biocontrol activity of P. guilliermondii was brought about by the addition of CaCl_2. These investigators tested several salts
and found that calcium ions had the greatest effect while Mg²⁺ was ineffective. *P. guilliermondii* was also studied as a biocontrol agent against *P. expansum* by Gholamnejad and Etebarian (2009) in *in vitro* and *in vivo* experiments (on apples). Yeast cell suspensions, cell-free culture filtrates as well as volatile culture metabolites were assessed for activity against the pathogen; the highest inhibition was facilitated by the volatile metabolites followed by cell-free filtrates. Yeast cell suspensions at a concentration of 1.0 x 10⁵ cfu/ml completely inhibited *P. expansum* *in vitro* and on apples. A negative relationship between yeast cell concentration and pathogen spore germination and germ tube growth existed. The antagonistic activity of the yeast was further increased when 2% CaCl₂ was added to the suspensions. Friel et al. (2007) tested several *P. anomala* strains on wounded Golden Delicious apples and observed that strain K effected an over 95% reduction in lesion diameter when the yeast (1.0 x 10⁵ cfu/wound) was applied to the wounds 24h before infection with *B. cinerea* (5.0 x 10⁴ spores/wound). Another strain (KH6) had slightly lower effect causing about 90% lesion reduction under the same as above conditions. Haissam (2011) also reported that *P. anomala* strain K was antagonistic to *B. cinerea* on apples. This strain inhibited *B. cinerea* spore germination. Possible mechanisms of action were presumed to be competition for nutrients and mycoparasitism since *P. anomala* filtrates contained endo- and exo-β-1, 3-glucanase activities. *P. fermentans* 726, on the other hand, was effective against brown rot (*M. fructicola*) of Golden Delicious and Renetta apples, when co-inoculated with the pathogen onto artificially-inflicted wounds of the fruits. The fruits were stored at 25°C and 85% RH for 1 week. *P. fermentans* population increased from 6.0 x 10⁴ to 1.0 x 10⁵ cfu/wound within the first 4 days of incubation and formed a thin film over the wounds. This film probably prevented the mould spores from coming in contact with the fruit tissue and deriving the necessary nutrition for germination and proliferation. Cell-free culture filtrates of the organism had no inhibitory effect (Giobbe et al., 2007).

7. **Rhodosporidium toruloides**
Rhodosporidium toruloides NRRL Y1091 was studied by Filonow and his co-workers (1996) for its effect on the growth of *B. cinerea* on wounded Golden Delicious apples. These investigators demonstrated that *R. toruloides* had strong antagonistic activity against the mould pathogen and reduced the mould growth incidence by 86.7% and the lesion size from 27.8 mm to 1 mm. Pathogen inhibition achieved by this strain was similar to that of chlorothalonil and the well accepted biocontrol agent, *S. roseus* FS-43-238.

8. **Rhodotorula species**
Rhodotorula glutinis has exhibited antagonism against *P. expansum* and *B. cinerea*. *R. glutinis* HRB6 was studied by Sugar and Spotts (1999) as a BCA for controlling blue mould decay in Bosc pears after harvest. These investigators artificially wounded the fruits and inoculated 40 μl of a yeast suspension containing 1.0-1.5 x 10⁶ cells/ml onto each wound (~5.0 x 10⁶ cells/wound) and subsequently, added 40 μl of *P. expansum* spore suspension (1.0 x 10⁴ cfu/ml) to each wound and refrigerated the treated fruits at 0°C for 2 months. At the end of the storage period, the fruits were examined for incidence of visible infection and lesion size. Lesion diameters were recorded and compared to respective lesions on the control (not inoculated with the BCA yeast) fruits. This strain was found to facilitate significant reduction in percent infections and size of lesions caused by both TBZ-sensitive and TBZ-resistant strains of *P. expansum*. The same strain was also evaluated by Chand-Goyal and Spotts (1996) and was found to be a strong antagonist of *P. expansum* and *B. cinerea*, capable of controlling blue and grey mould rots in Bosc pears after harvest. Application of the yeast in combination with TBZ (15 μg/ml) significantly improved decay control. *R. glutinis* produced a siderophore, rhodotorulic acid, which was at least partially responsible for its biocontrol activity (Calvente et al., 1999).

Other *Rhodotorula* species (*Rhodotorula aurantiaca* and *Rhodotorula minuta*) were also investigated and found to possess notable biocontrol activities. Two *R. minuta* strains, YCL6 and YCL7, were capable of significantly reducing the size of *P. expansum* lesions in Bartlett pears, but did not reduce blue mould decay incidence (Chand-Goyal and Spotts, 1996). *R. minuta* was also effective against *Colletotrichum* and had good tolerance to low temperatures, retaining high viability after 6 months at 4°C. This trait is very important for BCAs destined for postharvest applications on fruits (Patiño-Vera et al. 2005). According to Chand-Goyal and Spotts (1996), *R. aurantiaca* strain YCL5 reduced incidence of blue mould on Bartlett pears by 50% and lesion diameter from 35.5 mm to 15.8 mm. Experiments with d’Anjou pears showed that this strain was efficacious in reducing severity of blue mould rots, but only reduced disease incidence by 8%.

9. **Saccharomyces species**
Several *Saccharomyces* strains isolated from food products were screened for biocontrol activity against the brown rot-causing mould, *M. fructicola*, by Zhou et al. (2008). The yeasts and the pathogen were co-inoculated on artificially-inflicted wounds of Jonagold and Golden Delicious apples (approximately 2.0 x 10⁵ *M. fructicola* conidia and 2.0 x 10⁵ cfu of a yeast isolate per wound) and the treated fruits were incubated for 5 days at 22-24°C in a chamber with 85% RH. At the end of this experiment, it was determined that three strains, *Saccharomyces delbrueckii* A50, *Saccharomyces cerevisiae* YE-5 and *S. cerevisiae* A41 showed biocontrol activity against *M. fructicola*. *S. delbrueckii* A50 reduced brown rot incidence by over 80% and lesion size by more than 68%, while *S. cerevisiae* YE-5 and *S. cerevisiae* A41 reduced disease incidence by 52 and 54%, respectively.

10. **Sporobolomyces species**
Some *Sporobolomyces roseus* strains were reportedly efficient in inhibiting postharvest gray and blue mould decays on apples. Janisiewicz et al. (1994) tested *S. roseus* FS-43-238 isolated from pear for antagonism against postharvest pathogens of apples and found that this strain had high capacity in inhibiting growth of *B. cinerea* (gray mould) and *P. expansum* (blue mould). The degree of inhibition depended on the concentrations of the yeast antagonist and pathogens. When this yeast was drop-inoculated onto the wounds of the fruits (25 μl/wound)
with cell suspensions containing 7.9 x 10^6 and 6.3 x 10^7 cfu/ml (for *P. expansum* and *B. cinerea*, respectively) and with 20 μl/wound of a pathogen spore suspension containing 1.0 x 10^8 spores/ml and incubated at 22°C for 1 week, it reduced the incidence of blue mould rot from 100% to 0% and grey mould decays from 78% to 0%. This biocontrol agent also decreased decays of wounded apples dipped in yeast-pathogen (*P. expansum* or *B. cinerea*) suspensions and stored at 1°C for 3 months. Filonow *et al.* (1996) tested three *S. roseus* strains (FS-43-238, ATCC 28988 and ATCC 24257) for antagonistic activity against *B. cinerea*. These investigators inoculated artificially-wounded Golden Delicious apples with the test yeasts and the pathogen and stored the treated fruits at 22-24°C for 1 week. After the incubation period, all three strains had shown inhibitory influence on the pathogen, but the ATCC strains had a greater antagonistic effect than the FS-43-238 strain. Both ATCC strains reduced decay incidence by over 70% and lesion diameters by 84 and 95% for ATCC 28988 and ATCC 24257, respectively. All *Sporobolomyces* strains tested by these researchers performed better than the fungicide benomyl. *Sporidiobolus salmonicolor* (*Sporobolomyces salmonicolor* anamorph) ATCC 623 under the same experimental conditions caused a 37% reduction of decay incidence and reduced the lesion diameter from 27.8 mm to 9.4 mm (66%). This strain also performed better than benomyl (Filonow *et al.*, 1996). Experimental work with a *S. roseus* mutant resistant to 2-deoxy-D-glucose (2-DOG) demonstrated that this organism was very effective against *P. expansum* when used simultaneously with 2-DOG (Janisiewicz, 1994). In this study, Golden Delicious apples and Anjou pears were wounded and subsequently, wounds were inoculated with the *S. roseus* mutant alone or in combination with 2-DOG (25 μl/wound of a suspension containing the antagonist yeast plus 4 mg of 2-DOG per ml) and the pathogen. The results of the experiment showed that addition of 2-DOG significantly increased control of decays by *P. expansum*.

Moulds

1. *Aureobasidium pullulans*

The yeast-like fungus *Aureobasidium pullulans* is a widespread saprophyte commonly found in phyllosphere and carposphere. This organism is able to withstand desiccation conditions and survive relatively high irradiation. It has exhibited substantial biocontrol activity against several postharvest pathogens and has been utilized to control decay of various fruits (e.g. apples, cherries, peach and strawberries) caused by the postharvest pathogens *P. expansum*, *B. cinerea*, *R. stolonifer* and *M. fructigena*. *M. fructigena* sp. (Mourn *et al.*, 2007; Bencheqroun *et al.*, 2007; Lima *et al.*, 1997; Ippolito *et al.*, 2000; Schena *et al.*, 2003). The ability of *A. pullulans* (isolate LS-30) to control postharvest fruit decays was investigated by Castoria *et al.* (2001). These researchers conducted experiments on artificially-wounded Royal Gala apples infected with *P. expansum* or *B. cinerea*. The fruits were surface-disinfected in 1% commercial bleach and subsequently, inoculated with an *A. pullulans* suspension (3.0 x 10^7 cfu/wound); two hours after the BCA inoculation, a pathogen spore suspension was applied to the wounds (3.0 x 10^5 spores/wound) and the treated fruits were incubated at 20°C and 95% RH for 6 days. This strain reduced decay incidence by 76.5 and 88.5% for *B. cinerea* and *P. expansum*, respectively. *Vero et al.* (2009) tested 10 *A. pullulans* strains (recovered from apples held in cold storage for several months) for biocontrol activity against the blue and grey mould pathogens. Results of this study showed that one *A. pullulans* strain (ApB), in particular, caused significant reduction of blue and grey mould decay incidence and severity on Red Delicious apples stored at 0-1°C for 3 months. According to various past studies, *A. pullulans* utilizes a combination of biocontrol mechanisms such as competition for nutrients, induction of host resistance and production of lytic enzymes (chitinases, glucanases and proteases) (Bencheqroun *et al.*, 2007; Ippolito *et al.*, 2000; Zhang *et al.*, 2010; Zhang *et al.*, 2012). Castoria *et al.* (2001) studied the mechanisms of biocontrol action of *A. pullulans* strain LS-30 and concluded that the main mechanism was competition for nutrients, but lytic enzymes such as exo-chitinase and β-1, 3-glucanase were also detected in the apple wounds inoculated with this organism. *A. pullulans* strain ApB also produced the lytic enzymes, chitinase and β-1, 3-glucanase. Additionally, this strain generated hydroxamate-type siderophores, which probably contributed to its biocontrol efficacy (Vero *et al.*, 2009). An *A. pullulans*-based product has been developed in Germany and used under the name “BonifProtect” for the control of storage diseases of apples in some European countries (Janisiewicz, 2010; Trapman *et al.*, 2010; Weiss *et al.*, 2006).

2. *Trichoderma* species

Trichoderma spp. (*Trichoderma harzianum*, *Trichoderma atroviride*, *Trichoderma reesei* and *Trichoderma virens*) have been tried and commercially used as biocontrol agents against various plant and postharvest pathogens (Harman *et al.*, 2004; Rocco and Perez, 2001). Quaglia *et al.* (2011) reported a significant reduction of percent infectivity and lesion diameters of *P. expansum* decays by various *Trichoderma* species (*T. harzianum* strains T22 and T67, *T. atroviride* P1 and *T. reesei* T34) when this pathogen was artificially inoculated on wounded Golden Delicious apples and stored for 6 days at ~21°C. In a study by Bordbar *et al.* (2010), two *T. virens* strains (T6 and T8) were tested for antagonistic activity against *P. expansum* in vivo (on Golden Delicious apples). The BCA was applied to fruit (2.0 x 10^5 conidia/wound) 4 h prior to pathogen (2.0 x 10^7 conidia/wound) inoculation and the treated fruits were stored at 20°C for 8 days. Both *Trichoderma* strains effected significant decrease in fruit lesions caused by the pathogen at both, day 4 and 8 of incubation, but strain T8 had a greater antagonistic effect. Peroxidase, catalase and β-1, 3-glucanase activities as well as phenolic compound levels increased in fruits inoculated with *P. expansum* and the antagonist strains. Increased enzyme activities and phenolic compounds probably contributed to biocontrol activity of these organisms. Batta (2007) evaluated *T. harzianum* strain Th2 (isolated from soil from a vegetable garden) formulated in an invert emulsion and in non-formulated form (as suspension in sterile de-ionized water) as an antagonist of pome fruit postharvest pathogens. In that study, Th2 was inoculated on artificially-wounded Golden Delicious apples and...
pears. The antagonist concentration applied to each wound was 25 μl of a suspension containing 9.6 x 10^7 conidia/ml or 25 μl of an invert emulsion with 4.6 x 10^8 conidia/ml. The pathogens, R. stolonifer (strain RS1) isolated from infected strawberry, B. cinerea (strain BC1) from infected apple fruit, or P. expansum (PE8) originating from infected pear fruit were inoculated onto the wounds of the fruits (25 μl/wound of suspensions containing over 2.0 x 10^6 spores/ml) 1 h after the antagonist application and the fruits were stored at 20 ±2°C or 30 ±2°C for 3–4 days. T. harzianum Th2 facilitated significant reduction of lesion diameters of R. stolonifer in apples and pears and diminished lesions of B. cinerea and P. expansum in pears. This organism protected unwounded fruits for up to 2 months and reduced lesion diameter up to 86%. Spore suspensions of this Trichoderma strain in sterile deionized water had a lesser effect on the pathogens than spores formulated in invert emulsion. Trichoderma spp. develops a kind of symbiotic relationship with plants. They derive nutrition from plant exudates and excrete effector proteins into the plant tissue: these proteins trigger an increase in plant defense (e.g. increase of Ca^{2+} levels), which in turn results in resistance to pathogens (Yedidia et al., 2000; Woo et al., 2009). Besides induction of plant defense responses, other biocontrol mechanisms such as parasitism, competition for space and nutrients, and production of antibiotics were observed in Trichoderma. Trichoderemas can parasitize on some plant and postharvest pathogens such as B. cinerea and P. expansum where they can cause hyphal destruction of the pathogens and consequently, limit plant diseases and postharvest decays (Bordbar et al., 2010; El-Naggar et al., 2008; Hai, 2012). Schuhmacher et al. (2009), on the other hand, reported the production of several antifungal peptaibiotics by T. atroviride. Elad et al. (1999) studied the biocontrol mechanisms of T. harzianum T39 against B. cinerea and found that this BCA restrained pathogen growth possibly through competition for nutrients and space and suppression of the pathogen’s hydrolitic enzymes - cutin esterase, exo- and endopolygalacturonase, pectin methyl esterase and pectate lyase. These investigators also noted that a serine protease produced by T39 was responsible for suppressing B. cinerea infectivity. Although the antagonistic effects of Trichoderma spp. are potent against some pome fruit pathogens, their application to fruits after harvest is not very favorable because of their possible adverse effects on the fruit natural protective flora and due to their strong and unpleasant odors which may make the fruits undesirable for consumption.

Use of combination of biocontrol agents and other treatments for higher antagonistic effectiveness

Use of combinations of BCAs (e.g. utilization of certain bacterial and yeast strains in pairs), or integration of BCAs with other treatments to increase antagonistic power and broaden the spectrum of activity has also been examined in recent years. Some examples of successful such combinations are given below.

Use of mixtures of biocontrol agents

1. Candida sake and Pantonea agglomerans

C. sake was found to be more effective against postharvest apple pathogens when used in combination with the bacterium P. agglomerans (Viñas et al., 1998). Nunes et al. (2002a) reported that the best combination of these antagonists was at a 50:50 proportion of C. sake (2.0 x 10^7 cfu/ml): P. agglomerans (8.0 x 10^7 cfu/ml). When the inoculated fruits were incubated at room temperature (20°C) for 7 days, this combination completely inhibited the growth of the pathogens on pears and reduced the severity (lesion size) of P. expansum decay on Golden Delicious apples by more than 95%. The incidence (percentage of infected wounds) of the disease on the latter product was also significantly reduced (from 100% to 6%). According to these investigators, the same mixture (at the 50:50 proportions) also exerted the best biocontrol against P. expansum and B. cinerea on artificially-infected, wounded apples and pears incubated at 1°C for 60 days.

2. Sporobolomyces roseus and Pseudomonas syringae

Use of a mixture of S. roseus and P. syringae at a 50:50 proportion improved biocontrol of P. expansum on wounded Golden Delicious apples as compared with experiments in which only one of the two BCAs was used against the pathogen. The unique biochemical requirements of the two P. expansum antagonists (broad nitrogen utilization by P. syringae and multi-source carbon use by S. roseus) allowed them to flourish on apple wounds and perhaps excluded the pathogen from acquiring the necessary nutrients for spore germination and growth (Janisiewicz and Bors, 1995).

3. Cryptococcus laurentii and Metschnikowia pulcherrima

The combined effects of the yeasts Cr. laurentii ST4-E14 and M. pulcherrima FMB-24H-2 were studied by Conway et al. (2005). These investigators artificially infected wounds of Golden Delicious apples with P. expansum and subsequently, inoculated the yeast antagonists onto the same wounds (individually or in combination) and they observed that over 95% of the apples had no signs of decay after 2 months of storage at 1°C. After 4 months at 1°C, 67% of fruits inoculated with Cr. laurentii and 56% of fruits inoculated with M. pulcherrima were still undamaged; higher decay control was achieved when both yeasts were simultaneously added to the wounds.

BCAs combined with low amounts of synthetic fungicides or other chemicals

Combinations of biocontrol agents with reduced amounts of commonly used postharvest fungicides were found to have higher efficiencies in controlling storage pathogens. Combination of P. syringae with cyprodinil was more efficient in controlling P. expansum in artificially-infected Empire and McIntosh apples than either treatment alone (Errampalli and Brubacher, 2006). Cr. laurentii (strains HRA5 and 87-108), Cr.-infirro-miniatus YY6, or Rh. glutinis HR66 combined with 100 ppm TBZ completely inhibited the growth of TBZ-sensitive P. expansum on wounds of Bosc pears (Sugar and Spotts, 1999). The combined effects of low level of TBZ (15 μg/ml) with Cr. laurentii HRA5, Cr.-infirro-miniatus YY6, or Rh. glutinis HR66 were also evaluated by Chand-Goyal and Spotts (1996). The results of this study showed that combination of the two treatments resulted in significant reduction of pear disease after harvest.

Other chemicals such as ammonium molybdate, calcium salts, 2-deoxy-D-glucose (2-DOG), etc. were also shown...
to improve biocontrol activity of certain BCAs. Combination of *C. sake* with ammonium molybdate resulted in increased control of postharvest decays in pome fruits, while use of 2-DOG in combination with *Candida saitoana* improved the control of postharvest apple decays caused by *P. expansum* and *B. cinerea* (El-Ghaoth *et al.*, 2000b; Nunes *et al.*, 2002b). A study conducted by Janisiewicz (1994) showed that addition of 2-DOG (up to 4 mg/ml) caused a significant increase in the antagonism of a *S. roseus* mutant against blue mould postharvest spoilage in Golden Delicious apples and to a lesser degree in Anjou pears. Simultaneous use of *A. oleophila* (strain 182) and 90 or 180 mM of CaCl₂ enhanced postharvest control of *P. expansum* and *B. cinerea*. Calcium ions inhibited the germination of spores and the production of pectolytic enzymes by these pathogens (Wisniewski *et al.*, 1995). Combination of other *Candida* BCAs such as *C. guilliermondii* strains (3-C-1b and F1) and *C. membranaefaciens* with CaCl₂ also resulted in increased control of decays caused by postharvest pome fruit pathogens (Gholamnejad and Ettebarian, 2009; Scherm *et al.*, 2003). Application of a 2% CaCl₂ on apple wounds simultaneously with *K. apiculata* or *P. guilliermondii* also enhanced biocontrol of *P. expansum* and *B. cinerea* by *K. apiculata* and significantly increased the antagonistic activity of *P. guilliermondii* against *P. expansum* (Gholamnejad and Ettebarian, 2009; McLaughlin *et al.*, 1990; McLaughlin *et al.*, 1992). Sugar and Basil (2007) employed various pre- and postharvest treatments in an effort to minimize decay of Bosc pears in storage and found that the best spoilage control was the use of CaCl₂ in the orchard followed by postharvest treatment with BioSave 110 and storage in LifeSpan modified atmosphere packaging. Poleatwich (2010) studied the combined effects of bacteria (*B. megaterium* A3-6 or Ae-1, *B. mycoides* A1-1, or *B. laterosporus* FLS-1) and chitosan on *C. acutatum* (causative agent of bitter rot) and *P. expansum* (cause of blue mould) inoculated on Golden Delicious and Rome Beauty apples and found that bitter rot and blue mould decays were significantly lower on the treated apples than on the pathogen-only-inoculated controls; a synergistic effect existed when a combination of *B. mycoides* (isolate A1) or *B. megaterium* (isolates A3-6 and Ae-1) and chitosan was applied to wounded Golden Delicious apples. Additionally, an improvement of *C. saitoana* biocontrol activity against moulds causing postharvest decays in apples by the addition of glycochitosan was reported by El-Ghaoth *et al.* (2000a). A *C. saitoana* product was developed by Neova Technologies (Abbotsford, British Columbia, Canada) and is used for the biocontrol of postharvest diseases in fruits (Droby *et al.*, 2009; Abano and Sam-Amoam, 2012).

BCAs integrated with other treatments

The protective effect of *M. pulcherrima* T5-A2 combined with heat treatment (38°C for 4 days) against *P. expansum* and *C. acutatum* was studied by Janisiewicz *et al.* (2003). These investigators inoculated the antagonist along with the pathogens on Golden Delicious apples and stored the treated apples at 0.5°C under controlled atmospheres (1.1% O₂ and 1.8% CO₂) for 2 or 4 months, or 4 months under the above conditions followed by 2 weeks at room temperature. The results of the study showed that the pathogens were controlled better when apples were treated with hot air (38°C) for 4 days prior to inoculation with the pathogens and the antagonistic yeast. Conway *et al.* (2004) also examined the effects of combining *M. pulcherrima* (ST1-D9 or FMB-24H-2 strains) with heating at 38°C for 4 days on Golden Delicious apple decays caused by *P. expansum* and *C. acutatum* and found that combination of either strain with heat treatment eliminated the postharvest decays by the two pathogens. Conway *et al.* (2005) treated wounded Golden Delicious apples with heat (38°C for 4 days) and subsequently, inoculated the wounds with *P. expansum* and the yeast antagonists, *Cr. laurentii* strain ST4-E14 and *M. pulcherrima* strain FMB-24H-2 (alone or in combination) and stored the treated fruits at 1°C for 4 months plus 2 weeks at 20°C. After the incubation period, it was determined that complete inhibition of *P. expansum* decay was achieved with this treatment. Use of microwave treatment followed by the application of the biocontrol agent, *Cr. laurentii*, to control blue mould rot in pears was investigated by Zhang *et al.* (2006). These researchers studied the effect of microwave treatment (2450 MHz for 2 min), *Cr. laurentii* application as well as the combination of the two methods on natural decay of pears stored at 2°C for 60 days and subsequently kept at 20°C for 15 additional days and found that the antagonistic effects were stronger when the antagonist was combined with microwave treatment. Combination of the two treatments on pears artificially-wounded and inoculated with *P. expansum* also resulted in enhanced reduction of decays. This combination reduced the incidence of fruit infections from a 100% to 20% and the lesion size from 2.81 mm to 1.1 mm. The effects of biocontrol yeasts combined with controlled atmospheres (CA) have also been investigated. Usall *et al.* (2000) used *C. sake* strain CPA-1 alone or in combination with CA to inhibit blue mould decays on apples. These investigators inoculated wounded Golden Delicious apples with the pathogen (*P. expansum*, 1.0 x 10⁴ spores/ml) and various concentrations of *C. sake* and stored the treated fruits at 1°C under various O₂ - CO₂ atmospheres for 60 days. Results of this experiment showed that better decay control was achieved when *C. sake* application was integrated with use of CA than either treatment alone. The highest reduction in lesion size (97%) was noted when the fruits were treated with a *C. sake* suspension containing 2.4 x 10⁴ cells/ml and stored under a CA consisting of 3% O₂ and 3% CO₂. Under the same conditions the incidence of blue mould decays was reduced by 93%. Tian *et al.* (2002) also studied the combined effects of CA and yeast antagonists on the reduction of *B. cinerea* and *P. expansum* decays of apples and pears. These investigators artificially wounded and inoculated Golden Delicious apples and Jingbai pears with the BCAs *Cr. albidus* or Trichosporon sp. and the pathogens, and stored the inoculated fruits under various CA conditions at 1°C for 40 days. The mould pathogens were better controlled in apples than in pears; the inhibitory effects were stronger against *B. cinerea* than on *P. expansum* and were more pronounced in storage under increased CO₂ concentrations. Although many BCAs (alone or in combination with other biocontrol organisms or integrated with chemical or heat treatments) were found to exert significant decay control in fruits after harvest,
they have some major shortcomings such as inability to control already established infections, failure to retain high viability and substantially proliferate under harsh conditions, and short shelf life in formulations destined for easy application (Droby et al., 2009; Nunes, 2012; Sharma et al., 2009). Search for better, more efficient BCAs and/or improvement of the ones currently used should be the focus of future studies.

Biocontrol mechanisms employed by various BCAs

The mechanisms of biocontrol utilized by various BCAs have not been well elucidated. Modes of action believed to be responsible for the biological control of plant and postharvest pathogenic fungi include microbial antagonism and induced plant resistance to the pathogen. The first category encompasses parasitism, competition for nutrients and space between BCAs and pathogenic organisms, and antibiosis. The second category includes induction of plant defense mechanisms.

Parasitism

Parasitism is facilitated through the production of various types of cell wall-degrading enzymes (CWDEs) which enable the entrance of the antagonist organism into the hyphae of the pathogen (Chet and Baker, 1981; Poleatewich, 2010). Such enzymes include cellulases, glucanases, and chitinases (exo- and endochitinases). Bacteria known to produce CWDEs are *B. cereus*, *B. megaterium*, *P. agglomerans*, *Arthrobacter*, *Enterobacter cloacae*, *Micromonospora carbonacea*, various actinomycetes, etc. (Chernin et al., 1995; El-Tarabily et al., 1996; Pleban et al., 1997; Valois et al., 1996). Strong attachment of the BCA to the pathogen cells is necessary for parasitism. Poleatewich (2010) used scanning electron microscopy to elucidate the mechanism of postharvest biocontrol of *C. acutatum* by *B. megaterium*, isolate A3-6. This researcher observed that the bacteria were attached to the hyphae of the pathogen and that the hyphae were damaged and collapsed at the points of attachment.

Several biocontrol yeasts and some moulds were also shown to have the ability to attach to pathogens’ hyphae and produce CWDEs. *P. membranaefaciens* was able to attach to *P. expansum*, *R. stolonifer* and *M. fructicola* hyphae and had high glucanase and exo-chitinase activity in the presence of fungal hyphae, while *P. guilliermondii* showed high β-1, 3-glucanase activity, which could possibly cause hyphal wall degradation of the pathogen (Chan and Tian, 2005; Jijakli and Lepoivre, 1998). Wisniewski et al. (1991) reported that *P. guilliermondii* strongly attached to *B. cinerea* hyphae and that the hyphae were deformed and partially degraded at the points of yeast attachment while non-antagonistic yeasts attached loosely and did not cause degradation of the hyphae. This BCA also attached tightly to *P. expansum* hyphae and caused hyphal damage when the two organisms were co-cultured (Widyastuti, 2008). El-Ghaouth et al. (1998), on the other hand, observed a strong attachment of *C. saitoana* to *B. cinerea* hyphae and deformation of hyphae in the areas of attachment.

Some examples of mould on mould parasitism are the invasion and destruction of *Rhizoctonia solani* by *Trichoderma* spp. and the antagonistic degradation of *Sclerotinia* spp. by *Sporidesmium sclerotivorum* and *Coniothyrium mimitans* (Adams and Fravel, 1993; Jones et al., 2004). Lytic enzymes such as exo-chitinase and β-1, 3-glucanase were found in apple wounds inoculated with *A. pullulans* suggesting that this organism may cause some pathogen cell wall destruction (Castoria et al., 2001; Marusich et al., 1997). Zhang et al. (2010) reported the production of various lytic enzymes (chitinases, glucanases and proteases) as possible factors contributing to biocontrol efficiency of *A. pullulans* PL5, while Zhang et al. (2012) demonstrated that an alkaline protease from this organism was effective against *B. cinerea* and *P. expansum* grown on apple fruit. *Trichoderma* species also produce chitinases which facilitate cell wall destruction of the moulds they parasitize on (Lorito, 1998; Lorito et al., 1996; Liu et al., 2004). Haran et al. (1996) reported that *T. harzianum* strain T-Y exercises mycoparasitism through differential expression of its chitinolytic enzymes (β-1, 4-N-acetylglucosaminidases and endo-chitinases).

Competition for nutrients and space

Competition for nutrients between plant pathogens and BCAs has been explored in various studies. Filonow et al. (1996) reported competition for nutrients as one of the mechanisms of controlling *B. cinerea* by various yeast species including *Cr. humicola*, *F. floriforme*, *R. toruloides* and *S. roseus*. When high numbers of the biocontrol organism(s) colonize the fruit wounds, they restrict pathogen access to nutrients necessary for its spore germination and growth, thus inhibiting fruit spoilage (Nunes 2012). The main biocontrol mechanism utilized by *A. pullulans* was deemed to be competition for nutrients (Castoria et al., 2001). Bencheqroun et al. (2007) tested *A. pullulans* (strain Ach1-1) for modes of antagonism against *P. expansum* grown on apples and determined that competition for nutrients, particularly amino acids, was the main mechanism of action. Strong attachment of BCAs to pathogen hyphae is also believed to restrict the pathogen’s access to nutrients and therefore, inhibit its spore germination and growth (El-Ghaouth et al., 2004; Sharma et al., 2009). Additionally, excretion of nutrient-capturing substances can result in depletion of certain nutrients and consequently, retard or inhibit pathogen growth; an example is the competition for iron through the excretion of iron-chelating compounds (siderophores) by fluorescent *Pseudomonas* species. Siderophores have high affinity for ferric ions, thus causing depletion of iron and consequently, growth restriction of the mould pathogens (O’Sullivan and O’Gara, 1992). Competition between the BCA and the pathogen for nutrients and space was also observed in *T. harzianum* T39 (Elad et al., 1999). Competition for space can occur when the antagonist forms a well-established biofilm on the wounds and punctures of fruits before the spores of the pathogen come in contact with the fruit surface (Elad et al., 1999; Li et al., 2011). Therefore, application of the BCA before the pathogen comes in contact with the fruit is important in pathogen inhibition. Storage at room temperature for several hours after BCA inoculation was found to increase biocontrol activity. That time period possibly enabled the BCA to colonize the wound, proliferate and reach significantly-increased viable counts and consequently, prohibit the pathogen spores from getting access to fruit wounds and germinate (Nunes et al., 2008).

Antibiosis
Another mechanism of action is the excretion of antifungal substances. Filonow et al. (1996) applied dilute, cell-free sucrose solutions, in which various biocontrol yeasts were previously cultured, to apple wounds and observed that some of these solutions substantially inhibited conidial germination of B. cinerea. Other examples of antibiotic production by antagonistic microorganisms are the antifungal compounds produced by B. subtilis, B. cepacia and various Pseudomonas and Trichoderma species (Degenkolb et al., 2008; Kadir et al., 2008; Mukherjee et al., 2012; Pusey et al., 1988).

Studies on the mode of biocontrol action of B. cepacia revealed the production of a wide spectrum of antifungal compounds (Parke, 2005). B. cepacia strain B23 (formerly P. cepacia) was investigated by Kadir et al. (2008) and was found to produce pyrrolnitrin and other antifungal substances which were inhibitory to moulds like Colletotrichum gloeosporioides. Bacillus spp. (e.g. B. subtilis) achieved biocontrol through the production of antibiotics such as iturin (Pusey et al., 1988). Several Pseudomonas strains also produce antibiotics, thus protecting fruits from the invasion and spoilage by plant and postharvest pathogens (MicrobeWiki, 2011). Certain biocontrol P. fluorescens strains, for instance, produce several antibiotics including pyrrolnitrin, pyoluteorin and 2, 4-diacetylphloroglucinol which facilitate pathogen growth inhibition (Loper et al., 1997; Nowak-Thompson et al., 1999; Stutz, 1986; Whistler et al., 2000).

Trichoderma spp. produce peptaibiotics - linear peptides containing unusual amino acids such as α-aminoisobutyric acid (aib) - and semi-volatile pyrones which exert antibiotic activity against various pathogens (Degenkolb et al., 2008; Mukherjee et al., 2012; Szekeres et al., 2005). T. atroviride ATCC 74058, for instance, produces 20 Aib peptaibiotics (Schuhmacher et al., 2009). A subgroup of peptaibiotics, peptaibols (non-ribosomal, short peptides with high number of non-standard amino acids) produced by many Trichoderma species are strong antifungal compounds (Degenkolb et al., 2008; Mukherjee et al., 2012). Pyrones such as 6-pentyl pyrone (produced by T. atroviride and T. harzianum) were also shown to have antifungal activity against various pathogens including Fusarium oxysporum and Bipolaris (Mathivanan et al., 2008; Mukherjee et al., 2012; Reithner et al., 2005; Rubio et al., 2009), while a gliotoxin from T. virens was inhibitory to B. cinerea spore germination (DiPietro et al., 1993). Concerns about using BCAs producing antibiotics to manage postharvest diseases in fruits (and in foods in general), however, have resulted in rejecting commercialization of certain efficacious BCAs. Such example is B. subtilis strain B-3 which was not commercialized because it mainly controlled M. fructicola through the production of the antibiotic, iturin (Pusey et al., 1988).

Induction of resistance to pathogen

Some biocontrol organisms have the ability to induce resistance to pathogens in plants or harvested fruits by educating their defense response. Plant/fruit defense response includes production of substances inhibitory to pathogen CWDEs, phytoalexins, ethylene, phenolic compounds and active oxygen species (e.g. superoxide anion O_2^-) as well as strengthening of the cell walls of the host (Jamalizadeh et al., 2011; Karunaratne, 2011; Kumar et al., 2011). Induction of resistance is a complex mechanism involving several biochemical reactions which bring about changes in host tissue and production of pathogenesis-related proteins (Kloepper et al., 1992; Van Loon, 1997). Stimulation of phytoalexin production in wounds of fruits facilitated by Candida famata was reported by Arras (1996), while an increased resistance to P. digitatum initiated by C. oleophila (applied to wounded or intact grapefruits) was demonstrated by Droby et al. (2002). Increased production of super oxide anions and hydrogen peroxide by C. oleophila (in the presence of M. fructicola) on wounded and unwounded apple and citrus fruits was reported by Macarisin et al. (2010), whereas induction of systemic resistance in apple facilitated by C. saitoana was reported by El-Ghaouth et al. (2000c). More research is needed in order to further elucidate the mechanisms of biocontrol. Better understanding of these mechanisms will enable us to select more efficacious BCAs and develop appropriate methods for application of the antagonists. Elucidation of the modes of biocontrol will also aid in improving the biocontrol traits of BCAs through genetic engineering.

Economic feasibility

The development and commercialization of a BCA (biofungicide) is a long process consisting of many steps such as isolation and screening of the BCA, determining the mode of biocontrol action and improving efficacy, toxicology, production and scale-up production, formulation, semi-commercial trials, pilot trials, commercial trials, and registration. Although time-consuming and expensive, commercialization of biological control of postharvest diseases could be feasible because the conditions of fruit storage (i.e. temperature and humidity) can be regulated at such levels to favor survival and good performance of the biocontrol agent (Wisniewski et al., 2007). Economic feasibility is also possible since high numbers of the biocontrol agents can be readily produced and efficiently applied to stored fruits. The fact that the commodities to be treated are concentrated in relatively small areas ensures the need for smaller amounts of the BCA to be utilized making the treatment more economical. The biocontrol would be more cost-effective, if BCAs with high and wide spectrum efficacies are available (e.g. a BCA with inhibitory effects against several postharvest pathogens of the same commodity). Some obstacles exist in the production of very efficacious BCAs because some organisms tend to lose viability during processing and storage. More research should focus in enhancing the biocontrol strategies so that organisms like non-spore-forming bacteria do not lose viability during formulation and storage (Fravel, 2005). Once the technical obstacles have been surpassed and a BCA is proven effective against certain pathogens in a laboratory setting, it needs to be moved into a commercial scale. At this point some challenges are encountered with the registration of the new biological control agent with the USEPA and state regulatory agencies. This process includes environmental safety testing which can be lengthy and expensive (Harman, 2000). Another economic drawback of biopesticides is the fact that most of the existing formulations consist of lyophilized cells that need...
freezer storage. This preparation process and storage are costly. It would be more economical if the biocontrol agents could be maintained in high-titer suspensions at refrigeration temperatures. Some microorganisms in high-titer suspension, however, lose viability rapidly and consequently, lose biocontrol efficacy. Research is needed to improve long term refrigerated storage or find less expensive means for formulation and storage of BCAs.

TABLE 1. Microorganisms with biocontrol activity (antagonism) against pome fruit postharvest pathogens

<table>
<thead>
<tr>
<th>Antagonist</th>
<th>Strain(s)</th>
<th>Target pathogen</th>
<th>Crop</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus</td>
<td>C06</td>
<td>Monilinia fructicola</td>
<td>Apples</td>
<td>Zhou et al., 2008</td>
</tr>
<tr>
<td>Bacillus</td>
<td>A3-6, Ae-1</td>
<td>Colletotrichum acutatum</td>
<td>Apples</td>
<td>Poleatewich, 2010</td>
</tr>
<tr>
<td>Penicillium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penicillium expansum</td>
<td>A1-7</td>
<td>Monilinia fructicola</td>
<td>Apples</td>
<td>Zhou et al., 2008</td>
</tr>
<tr>
<td>Penicillium expansum</td>
<td>FLS-7</td>
<td>Colletotrichum acutatum</td>
<td>Apples</td>
<td>Poleatewich, 2010</td>
</tr>
<tr>
<td>Burkholderia cepacia</td>
<td></td>
<td>Penicillium expansum</td>
<td>Apples</td>
<td>Fraces et al., 2006</td>
</tr>
<tr>
<td>Burkholderia gladioli</td>
<td>DISTEF-G</td>
<td>Penicillium expansum</td>
<td>Apples</td>
<td>Scuderi et al., 2009</td>
</tr>
<tr>
<td>Lactic acid bacteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactobacillus</td>
<td>P02, C03-b</td>
<td>Monilinia fructicola</td>
<td>Apples</td>
<td>Zhou et al., 2008</td>
</tr>
<tr>
<td>Weissella cibaria</td>
<td>TM128</td>
<td>Penicillium expansum</td>
<td>Apples</td>
<td>Fraces et al., 2006</td>
</tr>
<tr>
<td>Pantoea agglomerans</td>
<td>EPS125</td>
<td>Botrytis cinerea</td>
<td>Apples</td>
<td>Fraces et al., 2006</td>
</tr>
<tr>
<td>CPA-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudomonas fluorescens</td>
<td>1100-6</td>
<td>Penicillium expansum</td>
<td>Apples</td>
<td>Etebarian et al., 2005</td>
</tr>
<tr>
<td>Pseudomonas syringae</td>
<td>ESC-10</td>
<td>Botrytis cinerea</td>
<td>Apples</td>
<td>Janisiewicz and Korsten, 2002</td>
</tr>
<tr>
<td>ESC-11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yeasts</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candida ciferrii</td>
<td>283</td>
<td>Penicillium expansum</td>
<td>Apples</td>
<td>Vero et al., 2002</td>
</tr>
<tr>
<td>Candida guilliermondii</td>
<td>3-C-1b, F1</td>
<td>Penicillium expansum</td>
<td>Apples</td>
<td>Scherr et al., 2003</td>
</tr>
<tr>
<td>Candida membranaefaciens</td>
<td>-</td>
<td>Penicillium expansum</td>
<td>Apples</td>
<td>Ghoolamnejad and Etebarian, 2009</td>
</tr>
</tbody>
</table>
| *Candida oleophila* | 182 | *Botrytis cinerea* | Apples | |}

392
Biocontrol agents active against pome fruit pathogens

<table>
<thead>
<tr>
<th>andauensis</th>
<th>Botrytis cinerea</th>
<th>Apples</th>
<th>Manso and Nunes, 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metschnikowia</td>
<td>Rhizopus stolonifer</td>
<td>Apples</td>
<td>Manso and Nunes, 2011</td>
</tr>
<tr>
<td>pulcherrima</td>
<td>Penicillium expansum</td>
<td>Apples</td>
<td>Saravanakumar et al., 2008</td>
</tr>
<tr>
<td>Botrytis cinerea</td>
<td>Alternaria alternata</td>
<td>Apples</td>
<td>Saravanakumar et al., 2008</td>
</tr>
<tr>
<td>SD1-D9</td>
<td>Penicillium expansum</td>
<td>Apples</td>
<td>Conway et al., 2004</td>
</tr>
<tr>
<td>Colletotrichum acutatum</td>
<td>Apples</td>
<td>Conway et al., 2004</td>
<td></td>
</tr>
<tr>
<td>T5-A2</td>
<td>Penicillium expansum</td>
<td>Apples</td>
<td>Janisiewicz et al., 2003</td>
</tr>
<tr>
<td>Penicillium expansum</td>
<td>Apples</td>
<td>Janisiewicz et al., 2003</td>
<td></td>
</tr>
<tr>
<td>FMB-24H-2</td>
<td>Penicillium expansum</td>
<td>Apples</td>
<td>Conway et al., 2004</td>
</tr>
<tr>
<td>Botrytis cinerea</td>
<td>Apples</td>
<td>Conway et al., 2004</td>
<td></td>
</tr>
<tr>
<td>Pichia angusta</td>
<td>Botrytis cinerea</td>
<td>Apples</td>
<td>Fiori et al., 2008</td>
</tr>
<tr>
<td>ANY-32, ANY-34, ANY-38</td>
<td>Monilinia fructicola</td>
<td>Apples</td>
<td>Fiori et al., 2008</td>
</tr>
<tr>
<td>Pichia anomala</td>
<td>Botrytis cinerea</td>
<td>Apples</td>
<td>Friel et al., 2007; Haissam, 2011</td>
</tr>
<tr>
<td>K</td>
<td>Monilinia fructicola</td>
<td>Apples</td>
<td>Haissam, 2011</td>
</tr>
<tr>
<td>Pichia fermentans</td>
<td>Botrytis cinerea</td>
<td>Apples</td>
<td>McLaughlin et al., 1992</td>
</tr>
<tr>
<td>726</td>
<td>Monilinia fructicola</td>
<td>Apples</td>
<td>Giobbe et al., 2007</td>
</tr>
<tr>
<td>Pichia guilliermondii</td>
<td>Botrytis cinerea</td>
<td>Apples</td>
<td>Gholmamnejad and Eiebarian, 2009</td>
</tr>
<tr>
<td>87</td>
<td>Penicillium expansum</td>
<td>Apples</td>
<td>Filonow et al., 1996</td>
</tr>
<tr>
<td>Rhodospirillum toruloides</td>
<td>Botrytis cinerea</td>
<td>Apples</td>
<td>Filionow et al., 1996</td>
</tr>
<tr>
<td>Rhodotorula aurantiaca</td>
<td>Penicillium expansum</td>
<td>Pears</td>
<td>Chand-Goyal and Spotts, 1996</td>
</tr>
<tr>
<td>Rhodotorula glutinis</td>
<td>Penicillium expansum</td>
<td>Pears</td>
<td>Sugar and Spotts, 1999</td>
</tr>
<tr>
<td>HRB6</td>
<td>Botrytis cinerea</td>
<td>Pears</td>
<td>Chand-Goyal and Spotts, 1996</td>
</tr>
<tr>
<td>Penicillium expansum</td>
<td>Pears</td>
<td>Chand-Goyal and Spotts, 1996</td>
<td></td>
</tr>
<tr>
<td>Rhodotorula minuta</td>
<td>Penicillium expansum</td>
<td>Pears</td>
<td>Chand-Goyal and Spotts, 1996</td>
</tr>
<tr>
<td>YCL6</td>
<td>Penicillium expansum</td>
<td>Pears</td>
<td>Chand-Goyal and Spotts, 1996</td>
</tr>
<tr>
<td>YCL7</td>
<td>Penicillium expansum</td>
<td>Pears</td>
<td>Chand-Goyal and Spotts, 1996</td>
</tr>
<tr>
<td>Saccharomyces debrueckii</td>
<td>Api</td>
<td>Monilinia fructicola</td>
<td>Zhou et al., 2008</td>
</tr>
<tr>
<td>Saccharomyces cerevisiae</td>
<td>Monilinia fructicola</td>
<td>Apples</td>
<td>Zhou et al., 2008</td>
</tr>
<tr>
<td>FS-43-238</td>
<td>Monilinia fructicola</td>
<td>Apples</td>
<td>Zhou et al., 2008</td>
</tr>
<tr>
<td>Sporobolomyces roseus</td>
<td>Penicillium expansum</td>
<td>Apples</td>
<td>Janisiewicz et al., 1994</td>
</tr>
<tr>
<td>ATCC 28988</td>
<td>Botrytis cinerea</td>
<td>Apples</td>
<td>Janisiewicz et al., 1994; Filonow et al., 1996</td>
</tr>
<tr>
<td>ATCC 24257</td>
<td>Botrytis cinerea</td>
<td>Apples</td>
<td>Filionow et al., 1996</td>
</tr>
<tr>
<td>Sporidiobolus salmonicolor</td>
<td>Botrytis cinerea</td>
<td>Apples</td>
<td>Filionow et al., 1996</td>
</tr>
<tr>
<td>Moulds</td>
<td>Aureobasidium pullulans</td>
<td>Penicillium expansum</td>
<td>Apples</td>
</tr>
<tr>
<td>LS-30</td>
<td>Botrytis cinerea</td>
<td>Apples</td>
<td>Castoria et al., 2001</td>
</tr>
<tr>
<td>ApB</td>
<td>Penicillium expansum</td>
<td>Apples</td>
<td>Vero et al., 2009</td>
</tr>
<tr>
<td>Botrytis cinerea</td>
<td>Apples</td>
<td>Vero et al., 2009</td>
<td></td>
</tr>
<tr>
<td>Trichoderma atroviride</td>
<td>Penicillium expansum</td>
<td>Apples</td>
<td>Quaglia et al., 2011</td>
</tr>
<tr>
<td>P1</td>
<td>Penicillium expansum</td>
<td>Apples</td>
<td>Quaglia et al., 2011</td>
</tr>
<tr>
<td>T22</td>
<td>Penicillium expansum</td>
<td>Apples</td>
<td>Quaglia et al., 2011</td>
</tr>
<tr>
<td>T67</td>
<td>Penicillium expansum</td>
<td>Pears</td>
<td>Batta, 2007</td>
</tr>
<tr>
<td>Th2</td>
<td>Botrytis cinerea</td>
<td>Pears</td>
<td>Batta, 2007</td>
</tr>
<tr>
<td>Rhizopus stolonifer</td>
<td>Apples, pears</td>
<td>Batta, 2007</td>
<td></td>
</tr>
<tr>
<td>Trichoderma reesei</td>
<td>Penicillium expansum</td>
<td>Apples</td>
<td>Quaglia et al., 2011</td>
</tr>
<tr>
<td>T34</td>
<td>Penicillium expansum</td>
<td>Apples</td>
<td>Bordbar et al., 2010</td>
</tr>
<tr>
<td>Trichoderma virens</td>
<td>Penicillium expansum</td>
<td>Apples</td>
<td>Bordbar et al., 2010</td>
</tr>
<tr>
<td>T6</td>
<td>Penicillium expansum</td>
<td>Apples</td>
<td>Bordbar et al., 2010</td>
</tr>
<tr>
<td>T8</td>
<td>Penicillium expansum</td>
<td>Apples</td>
<td>Bordbar et al., 2010</td>
</tr>
</tbody>
</table>

CONCLUSION

Many bacterial and fungal strains have been studied to date and several were proven to possess biocontrol activity against various postharvest pathogens. Combinations of such strains (i.e., the use of *P. agglomerans* in conjunction with *C. sake*) as well as application of a BCA following another treatment (e.g., use of reduced amounts of fungicides or heat treatment) resulted in increased protective effect against the pathogens. Despite the promising biocontrol properties of certain strains, some problems associated with the use of BCAs to control postharvest diseases have been encountered. Inconsistency in performance when used as the only treatment for the management of postharvest diseases and inability to control the growth of already established pathogens are the two major shortcomings of biocontrol agents. To overcome these problems improvements must be made in the various stages of their production and application. Additionally, research should be directed towards finding new biocontrol agents (perhaps with eradicative instead of protective activity) and improving the antagonistic traits of existing BCAs possibly through genetic modifications. The use of genetically modified organisms (GMOs), however, faces two major challenges – consumer acceptance and governmental policy – which must be surpassed in order for such organisms to be used as BCAs in food commodities.
ACKNOWLEDGMENTS
We are grateful to Jeffrey Kohn (Office of Regulatory Affairs/ FDA) for his valuable assistance during the preparation of the manuscript.

REFERENCES

El-Ghazouh, A., Smilanick, J.L., Wilson, C.L. (2000a) Enhancement of the performance of Candida saitoana by the...
addition of glycochitosan for control of postharvest decay of apple and citrus fruit. Postharvest Biology and Technology 19, 103-110.

Fiori, S., Fadda, A., Giobbbe, S., Berardi, E., Miglieli, Q. (2008) Pichia angusta is an effective biocontrol yeast against postharvest decay of apple fruit caused by Botrytis cinerea and Monilinia fructicola. FEMS Yeast Research 8, 961-963.

Biocontrol agents active against pome fruit pathogens

